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An Explicitly Solvable Kinetic Model 
for Semiconductors 

C a r l o  C e r c i g n a n i  t. 2 
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We consider a simple model for the electron Boltzmann equation in a semi- 
conductor and show that specific boundary value problems can be explicitly 
solved. Cases of both homogeneous and inhomogeneous electric fields are 
considered. 
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1. INTRODUCTION 

When the transport  of charges in a semiconductor is considered on a 
sufficiently large time scale, then the motion of the carriers is decidedly 
influenced by the short-range interactions with the crystal lattice, which 
can be described, in a classical picture of the electron gas, by particle 
collisions. This situation, which occurs in high-density integrated circuits, 
explains why there has been an increasing interest in understanding the 
mathematics of an electron gas in submicron structures, c~ The basic tool 
in this situation is given by the Boltzmann equation, ~2~ which may exclude 
the short-range interactions between carriers, which only play a role when 
the particle density is very large, but can incorporate the Pauli exclusion 
principle, if necessary. Here we shall not  take into account  any quantum 
effects; in particular, we shall ignore the exclusion principle and the fact 
that we deal with quasiparticles rather than particles. Also we shall assume 
that we deal with just one species; the extension to a mixture of carriers is 
possible, if cumbersome. 
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Since the Boltzmann equation for classical gases has been used for 
several years in the study of flight in the upper atmosphere and similar 
problems occur in the transport of neutrons and radiation, one might try 
to borrow some of the methods and results. 13"41 One difficulty is that in 
these areas the body force is ignored or considered to be of secondary 
importance, while the action of the electric field is of paramount impor- 
tance in the case of semiconductor devices. It is in fact the circumstance 
that the electrons are heated up by the electric field t h a t  needs to be 
accurately modeled. ~5" 6~ 

The Boltzmann equation for the electron gas in a semiconductor may 
be written as follows: 

Of .  e Of 
~ft+v .~x + m E .-~v=Lf (1.1) 

where f = f ( x ,  v, t) is the distribution function, a function of position x, 
velocity v, and time t. Here E is the electric field, sum of the external field 
(applied or produced by ions) and the field produced by carriers, e the 
electric charge of a carrier, m its mass, and L the collision operator, 
assumed to be linear. 

A frequently used approximation (the relaxation time approximation) 
assumes the following model for the collision term: 

(1.2) 

where ~=m/(kBT) (T is the temperature, kB is Boltzmann's constant) 
and C is a suitable normalization constant that ensures conservation of 
particles. 

The above expression clearly shows that in the space-homogeneous 
case the distribution function relaxes to a Maxwell-Boltzmann distri- 
bution, proportional to e x p ( - f l  1v12/2). Please remark that the integral 
multiplying this distribution is not proportional to the number density of 
the electrons, as is sometimes stated, unless the relaxation time is 
independent of v. 

In this paper we shall consider steady solutions, depending on just one 
coordinate x and one velocity component ~, for a special choice of the 
relaxation time z = r(v), which was first considered in connection with a 
model for a gas molecule wandering inside a solid body, in a layer near the 
surface, tT~ The model is chosen in such a way as to lead to explicit solutions 
for boundary value problems. 
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2. T H E  M O D E L  A N D  ITS S O L U T I O N  IN THE A B S E N C E  
OF ELECTRIC FIELDS 

As mentioned in the introduction, in order to discuss the behavior of 
the solutions of the Boitzmann equation in the presence of boundaries, we 
shall consider a steady problem in a one-dimensional geometry for a model 
with a relaxation time approximation. 

We shall take the relaxation time to be inversely proportional to I~1, 
where r denotes the velocity component along the x axis; this might be 
objectionable, but one may think that a suitable average has been taken 
with respect to the transverse degrees of freedom. 

The Boltzmann equation then reads as follows: 

~Of + q E  m O~ [~'[f(~')d~'-f]/l  (2.1) 

where I is a sort of mean free path and E the only component of the electric 
field, whereas M(~), the one-dimensional Maxwellian 

M(~) = (/~/2) exp(--/342/2) [/3 =m/(kBT)] (2.2) 

is normalized in such a way that 

I M(~) I~1 d~ = 1 (2.3) 

This ensures that the particle number is conserved in a collision. We 
shall also assume that the temperature in the Maxwellian is constant. 

Let us first try to solve the equation in the case of a zero electric field. 
Then we have the following consequences of Eq. (2.1): 

dj/ax = o 
(2.4) 

Ok/Ox = -.HI 

where 

J=I  {fd{; k= I [r162 (2,5} 

Then j is a constant and 

k = -jx/l  + ko (2.6) 

where ko is another constant. 
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Inserting Eq. (2.6) into Eq. (2.1) (with E = 0 ) ,  we obtain 

r Of/Ox = I~l [ (ko- jx / l )  M ( ~ ) - f ] / l  (2.7) 

It is convenient to solve the equation separately for ~ > 0 and ~ < 0; we 
denote by f +  and f -  the corresponding solutions. We have 

f +  = [ko -j(x/l-T- 1 )] M(~) + A +(r e T-x/t (2.8) 

where A+(~) denote two functions of ~ which are only subjected to the 
restriction 

f +~>o CA +(~) d~ = 0 (2.9) 

in order to be consistent with Eqs. (2.5)-(2.6). 
We thus obtain a solution which has a form similar to the one holding 

for small mean free paths plus a term which becomes important only near 
the boundaries and decays on a length of the order of / .  Just to give an 
example, let us assume that the boundary conditions are 

f +  ( -T- L) = g + (~) M(r (2.10) 

where g+ are two given functions. Then 

[ko+j(L/ l+l)]M(~)+A+(~)eL/ t=g+(~)M(r  (2.11) 

and 
A+(~)=e-L/'{ -- [ko+_j(L/l+ 1)] M(~)+g+(r M(~)} (2.12) 

and Eqs. (2.9) determine the values o f j  and ko in terms of g+. 

3. THE CASE OF A C O N S T A N T  ELECTRIC FIELD 

Let us consider now the case of a constant electric field in a slab 
- L  < x < L and let us put ~t = qE/m. Without loss of generality we assume 
~t > 0. The first of Eqs. (3.4) still holds, but the second one does not. We 
then write the equation for the particles with ~ < 0  (which travel against 
the field) 

Of-/Ox + ct Of-/O~ = Ir {M(~)[2k_ (x) + j ]  - f -  }/l (3.1) 

where we have let 

k • ( x ) =  I.~ > o _ _  I~1 f +  (x, ~)d~ (3.2) 

and remarked that j = k § - k_ is the constant current, 
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The trajectory of a particle in the phase plane in the absence of colli- 
sions is represented by the parabolas  

� 8 9  (3.3) 

Please remark that ~/>-c~L.  Unless ~ >/coL, a particle starting from 
x = L will reverse its path for x = - e / ~ .  

Let us now change the independent variables in Eq. (3.1) from (x, 4) 
to (y, e), where y = x  and e is given by Eq. (3.3). Then Eq. (3.1) becomes 

- 1 ~ = M( [2(e + ~y) ]  '/2) [2k _ (y)  + j ]  ~f~ (3.4) 

and hence 

f -  = A - (e )  e y/' 

+ e (y -.'"I'M( [2(e + ey ' ) ]  ~/2)[2k _ (y ' )  + j ]  dy'/l, 
.v 

- e / ~ < y < L  

(3.5) 

where 

k o ( x ) = e X / ' f  141A-( �89  (3.8) 
" r  

and we used Eq. (2.2). 
If we now multiply Eq. (3.7) by e - ' I~ '§ and differentiate with 

respect to x, we obtain 

d k - / d x  - #~k_ = do(x) - j / (21)  (3.9) 

where 

do(x) = e I'/t+t3~xl d [ko  e-('/t+#~'x) ] (3.10) 

or, going back to the original variables (x, 4), 

f -  = A -(�89162 _ ~x) e x '  

+ e I ....... ' ~ ' M ( [ 4 2 + 2 e ( x ' - x ) ] t / z ) [ 2 k ( x ' ) + j ]  dx'/l (3.6) 

We can now form an integral equat ion for k -  by inserting (3.5) into 
Eq. (3.2). We obtain 

k -  = k o ( x ) +  �89 e ~l . . . . .  ' ) l l / l+t~ll[2k_(x ')+j] dx'/l (3.7) 
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It is easily checked that when ~ = 0 ,  d o = 0  and Eq. (3.9) with j = c o n s t  
reproduces Eqs. (2.4). 

Let us now consider the particular case when the boundary conditions 
reduce to Eq. (2.10) with g _ + ( O = n •  are constants, or, in other words, 

f •  T-L) = n+_M(~) (3.11 ) 

Then it is easy to see that 

A -  (~  ~ 2 - c c x )  = ~ n-e-t~tr t-']e -t'/' (3.12) 

and 

k o ( x )  = �89 t ' ' -  tv/+ t~'x- z'l] (3.13) 

and Eq. (3.10) shows that d o ( x ) = 0  and hence Eq. (3.9) reduces to 

dk - /dx  - flotk- = - j / (  21) 

and hence 

dk/dx - flotk = - j (  1/l + fl~) (3.14 ) 

This shows that in this case k is a constant plus an exponential in x: 

k = Jo + Ko e~'x (3.15) 

where 

Jo = J [  1/(lfla) + 1 ] (3.16) 

One can easily relate Jo and Ko to n § and n - ,  because 

k + = (k + j ) /2  = j [ 1  + l/(21fl~)] + (Ko/2) e p~~ 

and 

k -  = (k - j ) / 2  =j/(21fla) + (Ko/2) e a'x (3.17) 

and k+(-T-L) must equal n+/2. Thus 

n +e apL --  n - e - a B c  
j = 2otfll 

(1 + 2/fl0Q e "OL + e -'~L 

J o =  + 1 [1/ (2l f le)+ 1] e ~ P t + e - ~ t / ( 2 e f l l )  (3.18) 

n - (1  + 2/ccfl)- n § 
K o = 2  

(1 + 2/a//) e "pL - e - ' p '  

We can now compute f - ( x ,  r from Eq. (3.6): 
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R 

f -  n -  e-fl[~2/2 + ~t(L-- x)] e -  (L--  x)/I 

+ Jo 1 + efll 

+ Koe~X( 1 - e -CL --~)//)] 

= flk-(x) e - ~2/2 (3.19) 

The calculation of f §  is more complicated, because there are two 
contributions: particles coming directly from the boundary at x - -  - L  and 
particles which started from x = L but reversed their paths, because their 
energy (per unit mass) e -- �89 _ 0~x is less than ~L. We thus distinguish two 
regions in the phase plane, �89 and ~ 2 ~ - e x < e L .  In the first 
region we have 

f+ = ~ n + e - f l ~ 2 / 2 e  - ( L  + x ) (  t/I- ~,fl) 

I 1-e-(L+'c)(l/`-c~#) 
+ e -ar Jo 1-otfll 

+ KoeP~ 1 - e-~1_ + x)/t)j (3.20) 

whereas in the second region, if we take into account that a particle going 
through x with velocity ~ reversed its path at x -~2 / (2~) ,  we obtain 

f+ = {n- ~ e-fl~,IL- X)e-[(L--,: +r162 

~II_e- tL-x+'2/ '2~"l ' ,~+' /"  
+ Jo 1 + ot[31 

+Koea,~,x-r _e-,L-x,/I-r e-r 

+ e-ar Jo l--otfll 

+ Koea~'x( 1 - e - r 1 (3.21) 

(~  ' 2 - c x x  < ~L)  
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It is clear that one has layers close to the boundaries which are 
extremely thin when the mean free path is small, but tend to invade the 
entire sample when the mean free path becomes comparable with the size 
of the latter. 

Before closing this section, we remark that it is easy to obtain the 
space-homogeneous solution corresponding to that discussed by Trugman 
and Taylor ~5~ for the case of a constant relaxation time. It is given by 

f +  - J [(1 +/~c~l) e - t~r - 2~le - r 
2~1(1 --/3M ) 

f-=J--~-e -pr (~>0 ,  j > 0 )  (3.22) 
2cd 

where j is, of course, the current density. 

4. THE CASE OF A N O N C O N S T A N T  FIELD 

The case of nonconstant, monotonous potential can be treated in a 
similar way. Let us assume that the potential energy is decreasing with x. 
The fact that the potential energy is monotonously decreasing implies (a) 
there are no particles with negative velocity that reverse their path, (b) we 
can invert the analog of Eq. (3.4), which now reads 

with 

�89 + V(x) = ~ (4.1) 

x=A(e - �89162  z) (4.2) 

where A is the inverse function V-J. In particular, Eq. (3.6) is replaced by 

f -  = A -(�89 + V(x)) ex/t 

fL "'VIM( + e ~'- [r dx'/l (4.3) 
.v 

and the integral equation for k -  becomes 

L 

k - = k o ( x ) + � 8 9  e CI ..... "l/t+P~vc"'~-2vlx~][2k_(x')+j]dx'/l (4.4) 
,r 

where 

k~ (x)=eX" ~r <o Ill A-(�89 + V(x)) dr (4.5) 
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If we now multiply Eq. (4.4) by e - x / t + # v l x l  and differentiate with 
respect to x, we obtain 

d k -  /dx  + # V ' ( x )  k_ = do(x ) - j / ( 2 1 )  (4.6) 

where 

do(x) = e Y/I- #v(x) d (k ~ e - ix/t- #v(x)]) 
dx 

(4.7) 

If we consider the particular case when the boundary conditions 
reduce to Eq. (3.11 ), then 

A - ( ~ r  e #[C'/2+vlx~-VlL~3e -L/I (4.8) 

and 

k o (x)  = �89 - e  I" - Lilt- #[ vl.,-I- V~LI] (4.9) 

and Eq. (4.7) shows that do(x)=0  and hence Eq. (4.6) reduces to 

d k -  I &  + #V' (x)  k-  = - j / (21)  (4.10) 

and hence k can be obtained through a quadrature. 
The remaining calculations can be carried ond, but become cumber- 

some. The case of a nonmonotonous potential requires a more detailed 
study. 

5. C O N C L U D I N G  R E M A R K S  

A kinetic model describing the behavior of carriers in a semiconductor 
has been used to find exact solutions for boundary value problems. 
Although the model is extremely simplified, it is felt that the qualitative 
features of the transport phenomena in small semiconductor devices are 
correctly described by the present solutions. Further work is of course 
needed for electric fields more general than those considered here. 
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